Universidad de Guadalajara

Centro Universitario de los Lagos

División de Estudios de la Biodiversidad e Innovación Tecnológica **Departamento de Ciencias Exactas y Tecnología**

1. IDENTIFICACIÓN DEL CURSO

Nombre de la materia

PROGRAMACIÓN EVOLUTIVA	

Clave de la materia:	Horas de teoría:	Horas de práctica:	Total de Horas:	Valor en créditos:	
10192	48	16	64	7	

Tipo de curso: (Marque con una X)											
C= Curso		P= Práctica		CT = Curso-Taller	х	M=Módulo		C= Clínica		S= Seminario	

Nivel en que ubica: (Marque con una X)			
L=Licenciatura	х	P=Posgrado	

Prerrequisitos formales (Materias previas	Prerrequisitos recomendados (Materias sugeridas en la ruta
establecidas en el Plan de Estudios)	académica aprobada)
	Algoritmos y estructuras de datos

Departamento:	Ciencias Exactas y Tecnologí	Ciencias Exactas y Tecnología			
Carrera:	Ingeniería en Electrónica y C	Ingeniería en Electrónica y Computación			
Área de formación:	Especializante selectiva	Especializante selectiva			
Historial de revisiones:	Fecha: 09-oct-2017	Responsable:			
Elaboración	Ricardo Armando Gonzále	Ricardo Armando González Silva			
	Silva				
	Hector Alfonso Juárez López				

Academia:	Computación
Aval de la Academia:	

2. OBJETIVO GENERAL

El estudiante comprenderá las bases teóricas y prácticas de la computación evolutiva, en particular de los algoritmos genéticos y otros algoritmos evolutivos. El estudiante será capaz de resolver problemas numéricos y de optimización utilizando programación evolutiva.

3. CONTENIDO

Temas y Subtemas

Tema 1. Introducción

- 1.1 Historia de la computación evolutiva
- 1.2 Inspiración en Biología
- 1.3 Motivos para trabajar con computación evolutiva

Universidad de Guadalajara

Centro Universitario de los Lagos

División de Estudios de la Biodiversidad e Innovación Tecnológica

Departamento de Ciencias Exactas y Tecnología

1.4 Ejemplos de aplicaciones de la computación evolutiva

Tema 2. Qué es un algoritmo evolutivo

- 2.1 Introducción
- 2.2 Componentes principales de los algoritmos evolutivos
- 2.3 Cómo trabaja un algoritmo evolutivo
- 2.4 Algoritmos evolutivos v.s. otras técnicas de optimización global

Tema 3. Algoritmos genéticos

- 3.1 Representación de los individuos
- 3.2 Selección de los padres
- 3.3 Recombinación
- 3.4 Mutación
- 3.5 Selección de supervivientes

Tema 4. Estrategias evolutivas

- 4.1 Introducción
- 4.2 Representación y auto-adaptación
- 4.3 Mutación y auto-adaptación
- 4.4 Recombinación
- 4.5 Selección de padres
- 4.6 Selección de supervivientes

Tema 5. Programación evolutiva

- 5.1 Desarrollo histórico
- 5.2 Representación de los individuos
- 5.3 Selección de padres y recombinación
- 5.4 Mutación
- 5.5 Selección de supervivientes

Tema 6. Programación genética

- 6.1 Representación
- 6.2 Mutación
- 6.3 Recombinación
- 6.4 Selección de padres
- 6.5 Selección de supervivientes
- 6.6 Inicialización
- 6.7 El efecto "engorde" (bloat)

Tema 7. Aprendizaje en sistemas clasificadores

- 7.1 Introducción
- 7.2 Sistema clasificador genérico
- 7.3 Ejemplo de sistema clasificador: el multiplexor
- 7.4 El sistema clasificador ZCS
- 7.5 El sistema clasificador XCS
- 7.6 Extensiones de los sistemas clasificadores

Universidad de Guadalajara

Centro Universitario de los Lagos

División de Estudios de la Biodiversidad e Innovación Tecnológica

Departamento de Ciencias Exactas y Tecnología

7.7 Enfoque tipo Pittsburgh

Tema 8. Control de parámetros en algoritmos evolutivos (OPCIONAL)

- 8.1 Introducción
- 8.2 Ejemplos alternativos a la aproximación estática
- 8.3 Aspectos relevantes para clasificar las técnicas de control dinámico de parámetros

4. BIBLIOGRAFÍA BÁSICA (Preferentemente ediciones recientes, 5 años)

- 1. J. E. Smith; A. E. Eiben; Introduction to evolutionary computing, Ed Springer (2003)
- 2. S. Michalewicz; Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed, Springer, 1996
- 3. E. Cuevas; D. A. Oliva; M. A. Díaz; J. V. Osuna; OPTIMIZACIÓN Algoritmos Programados con MATLAB, Alfaomega, 2016
- 4. Banzhaf W., Genetic Progamming an introduction, Morgan Kaufmann Publishers, 1998.
- 5. Holland, J., Adaptation in Natural and Artificial Systems, The MIT Press, 1992.
- 6. Koza, J., Genetic Programming, The MIT Press, 1992.
- 7. Stanley, K., Miikkulainen R., "A Taxonomy for Artificial Embryogeny", Artificial Life, No. 297 pp.93-130 MIT Press Journals, 2003.