

CENTRO UNIVERSITARIO DE LA COSTA SUR DIVISIÓN DE DESARROLLO REGIONAL DEPARTAMENTO DE INGENIERÍAS

Ficha de Identificación de Cursos

1. IDENTIFICACIÓN DEL CURSO

Nom	hro	ᅥᅀᅥ	a ma	taria:

Sistemas Robóticos

Carrera: Ingeniería Mecatrónica

Academia: Automatización y Control

AVAL DE LA ACADEMIA:

Nombre	CARGO	FECHA DE REVISIÓN	FIRMA
Mtro. José Eduardo Hernández Haro	Presidente	Junio de	
Dr. Jorge Arturo Pelayo López	Secretario	2020	

Nombre completo de el/los profesores

Pedro Barboza Jiménez / Gemma Alejandra Corona Núñez

Clave	Horas Teoría	Horas Práctica	Horas Totales	Créditos	Tipo de curso
IE040	20	60	80	7	CL

Tipo de Cu	irso:			
C=Curso	P=Práctica	CT= Curso-Taller	CL= Curso-Laboratorio	S=Seminario

Nivel en que se ubica:	Licenciatura
Área de formación:	Básica Particular Obligatoria (BPO)

Áreas de Formación:					
Básica Común	Básica Particular	Especializante	Optativa Abierta		
Obligatoria (BCO)	Obligatoria (BPO)	Selectiva (ES)	(OA)		

CENTRO UNIVERSITARIO DE LA COSTA SUR DIVISIÓN DE DESARROLLO REGIONAL DEPARTAMENTO DE INGENIERÍAS

Flujo de materias:	
Prerrequisitos formales:	IE029: Análisis de Sistemas y Señales

At	Atributos de Egreso y nivel de avance:					
C	ódigo	Niv	/el	Descripción		
	4 - 4	М		Identificar, plantear y resolver problemas de ingeniería basándose en los		
	AE1			principios de las ciencias básicas e ingeniería, con la finalidad de satisfacer las necesidades que surgen en su campo de acción.		
		_				
X	AE2			Diseñar e implementar sistemas en el área de automatización, control, robótica y sistemas embebidos, a través de proyectos integradores.		
		Α	X	electrical differences, at market are projected imaginations.		
	AE3	M		Desarrollar habilidades y aptitudes para la experimentación e investigación en las		
	ALS	A		áreas de ciencias básicas, control, electrónica, mecánica y computación.		
		I				
AE4 A acuerdo con el tipo de audiencia a la cual se dirige.			Se expresa de manera efectiva mediante la comunicación oral y escrita de acuerdo con el tipo de audiencia a la cual se dirige			
			accerdo con el tipo de addiencia a la cual se dirige.			
		ı		Reconocer sus responsabilidades éticas y profesionales en situaciones relevantes		
X	AE5	М		para la ingeniería y realizar juicios informados que deben considerar el impacto de las soluciones de ingeniería en los contextos global, económico, ambiental y		
		Α	Х	social.		
		ı		Reconocer la necesidad permanente de conocimiento adicional y tener la		
X	AE6	M		habilidad para localizar, evaluar, integrar y aplicar este conocimiento		
A X adecuadamente.		adecuadamente.				
		1		Favorecer el trabajo colaborativo y el liderazgo, conforma y se integra en equipos		
X	AE7	М		multidisciplinarios de trabajo que establecen metas, planean tareas, cumplen		
		Α	X	fechas límite y analizan riesgos e incertidumbre.		

2. PRESENTACIÓN

Descripción:

En este curso se pretende que los estudiantes desarrollen las habilidades necesarias que les permitan conocer los principios y fundamentos de la cinemática de un robot.

La robótica es un área donde convergen diferentes disciplinas como son la cinemática, la dinámica, informática y el control. Por este motivo, una clara comprensión de sus principios y aplicaciones resulta de la mayor relevancia.

CENTRO UNIVERSITARIO DE LA COSTA SUR DIVISIÓN DE DESARROLLO REGIONAL DEPARTAMENTO DE INGENIERÍAS

3. OBJETIVO

General:

Al final del curso el estudiante tendrá la capacidad para realizar estudios cinemáticos y dinámicos de los movimientos de los robots. Así como la aplicación y control de sistemas robóticos, para la selección y programación de robots en la implementación en proceso industrial.

4. OBJETIVOS

Específicos:

- Conocer las partes físicas de los robots.
- Entender y comprender los riesgos que conlleva la manipulación del robot.
- Realizar programas de rutinas de los robots industriales.
- Ejecutar las rutinas de programación de forma segura.

5. CONTENIDO

Temas y Subtemas:

1. UNIDAD I. INTRODUCCIÓN A LA ROBÓTICA.

- 1.1 Historia de los robots.
- 1.2 Origen y desarrollo de la robótica.
- 1.3 Definición y clasificación del robot.
- 1.4 Aplicaciones industriales.
- 1.5 Robots autónomos.
- 1.6 Robots Móviles.
- 1.7 Robots industriales.
- 1.8 Características principales de los robots industriales.
- 1.9 Robots especializados.
- 1.10 Tipos de elementos terminales.
- 1.11 Grados de libertad, configuraciones básicas y estructura mecánica.
- 1.12 Transmisiones y reductores.
- 1.13 Tipos de pinzas o efectores.

2. UNIDAD II. CINEMÁTICA.

- 2.1 Pose de un robot.
- 2.2 Orientación de un robot.
- 2.3 Transformaciones homogéneas.
- 2.4 Cinemática directa.
- 2.5 Cinemática.

3. UNIDAD III. CINEMÁTICA DIFERENCIAL.

- 3.1 Jacobiano geométrico.
- 3.2 Singularidades cinemáticas.
- 3.3 Cinemáticas diferencial inversa.

CENTRO UNIVERSITARIO DE LA COSTA SUR DIVISIÓN DE DESARROLLO REGIONAL DEPARTAMENTO DE INGENIERÍAS

3.4 Algoritmo de cinemática inversa.

4. UNIDAD IV. PROGRAMACIÓN DE ROBOTS.

- 4.1 Métodos de programación de robots.
- 4.2 Requerimientos de un sistema de programación de robots.
- 4.3 Ejemplo de programación de un robot industrial.

6. TAREAS, ACCIONES Y/O PRÁCTICAS DE LABORATORIO

Tareas, acciones y/o prácticas de laboratorio:

- a) Práctica 1. Cinemática directa.
- b) Práctica 2. Cinemática inversa.
- c) Práctica 3. Dinámica inversa.
- d) Práctica 4. Simulación de un brazo robot.
- e) Práctica 5. Planificación de trayectorias.
- f) Práctica 6. Dinámica directa y simulación de sistemas.
- g) Práctica 7. Programación de un brazo manipulador.
- h) Práctica 8. Proyecto final.

7. CRITERIOS Y MECANISMOS PARA LA ACREDITACIÓN DEL CURSO

Criterios y Mecanismos:

Acreditación: Para tener derecho a examen ordinario el alumno deberá cumplir con un 80% de las asistencias y para tener derecho a examen extraordinario el alumno deberá cumplir con el 65% de las asistencias.

Además, esta asignatura puede ser acreditada por competencias para lo cual el alumno deberá registrar su solicitud en el departamento al cual pertenece la materia, de acuerdo con el calendario escolar vigente. Esta materia también puede ser sujeta a revalidación, acreditación o convalidación de acuerdo con la normatividad vigente.

De conformidad a lo que establece el Capítulo IV en los artículos 19 al 22 y Capítulo V en los artículos 23 al 29 del Reglamento General de Evaluación y Promoción de la Universidad de Guadalajara.

8. EVALUACIÓN Y CALIFICACIÓN

Unidad de Competencia y Porcentajes:	
Exámenes	40 %
Prácticas	40 %
Proyecto final de carrera (avances)	20 %

CENTRO UNIVERSITARIO DE LA COSTA SUR DIVISIÓN DE DESARROLLO REGIONAL DEPARTAMENTO DE INGENIERÍAS

Estrategias de Enseñanza e Instrumentos de Evaluación sugeridas en el curso:

Estrategias de Enseñanza:	Instrumentos de Evaluación:
 EEI01: Organizadores previos (aula invertida). EEI06: Clases. Práctica de laboratorio. EEI08: Resolución de ejercicios y problemas. EEI09: Aprendizaje cooperativo. EEI10: Simulación pedagógica. EEI14: Enseñanza tradicional. 	 IEI05A: Trabajo de investigación en equipo. IEI07A: Solución individual de ejercicios. IEI10A: Reporte de prácticas. IEI15A: Prácticas de laboratorio. IEI17A: Proyecto integrador. IEI20A: Examen.

9. BIBLIOGRAFÍA

Básica:

1. Autor: Miranda Colorado, Roger.

Libro: Cinemática y dinámica de robots manipuladores.

Clasificación: 629.892-MIR-2016.

Editorial: Alfa-Omega.

2. Autor: Vázquez Fernández Pacheco.

Libro: Robótica educativa.

Clasificación: 629.892-ROB-2016.

Editorial: RA-MA.

3. Autor: Chacón Murguía, Mario Ignacio.

Libro: Percepción visual aplicada a la robótica.

Clasificación: 629.892-CHA-2015.

Editorial: Alfa-Omega.

4. Autor: Patnaik, Srikanta.

Libro: Innovations in robot mobility and control.

Clasificación: 629.892-INN.

Editorial: Springer.

5. Autor: Spong, Mark W.

Libro: Robot modeling and control. **Clasificación:** 629.892-SPO-2006.

Editorial: Wilev.

 Autor: Angulo Usategui, José M. Libro: Introducción a la robótica. Clasificación: 629.892-ANG-2014.

Editorial: Paraninfo.

Complementaria:

1. Autor: Marco A. Pérez Cisneros.

Libro: Fundamentos de robótica y mecatrónica con Matlab y Simulink.